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Moving Object Detection for Real-Time 
Augmented Reality Applications in a GPGPU 

Carlos Cuevas, Daniel Berjón, Francisco Morán, and Narciso García 

 
Abstract — The last generation of consumer electronic 

devices is endowed with Augmented Reality (AR) tools. These 
tools require moving object detection strategies, which should 
be fast and efficient, to carry out higher level object analysis 
tasks. We propose a lightweight spatio-temporal-based 
non-parametric background-foreground modeling strategy in 
a General Purpose Graphics Processing Unit (GPGPU), 
which provides real-time high-quality results in a great 
variety of scenarios and is suitable for AR applications1. 
 

Index Terms — Moving object detection, real-time, augmented 
reality, spatio-temporal non-parametric modeling, GPGPU.  

I. INTRODUCTION 

The last generation of consumer electronic devices, such as 
smart-phones, tablets, or home and portable video game 
consoles, is endowed with Augmented Reality (AR) tools [1]. 
These tools require new, fast and efficient (i.e. lightweight) 
computer vision applications [2] where moving object 
detection is a key step for several high level analysis tasks 
such as segmentation, tracking, classification, or event 
detection [3]. 

In the last years, a large number of moving object 
segmentation approaches has been proposed in the literature [4]. 
Some of these algorithms aim to maximize the speed and to 
reduce the memory requirements [5], providing satisfactory 
results for short sequences with quasi-stationary backgrounds [6]. 
However, these strategies are not efficient in critical situations 
such as abrupt or gradual illumination changes, shadows, noisy 
sequences, or dynamic backgrounds (containing fountains, flags, 
trees, sea waves, rain, etc.) [7], and depend on several thresholds 
that must be manually set by users [8]. 

To overcome these limitations, many multimodal strategies 
have been also proposed [9], which are able to model multiple 
states for each pixel. One key multimodal reference is the 
Mixture of Gaussians (MoGs) method [10], which uses a 
combination of several Gaussians to model the variations of 
each image pixel. Other multimodal techniques [11] use 
Hidden Markov Models (HMMs) to try and model the 
background variations by representing the changes in the 
sequences with different states. However, these strategies have 
important limitations: MoG-based methods are not flexible 
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enough to model complex background density functions [12], 
and in HMM-based methods the selection of appropriate 
models is difficult and the initialization process is 
complex [13]. 

More recently, non-parametric kernel density estimation 
methods have been proposed to improve the quality of the 
detections in environments where the pixel variations cannot 
be described with the abovementioned parametric 
strategies [14]. These techniques do not consider the values of 
the pixels as a particular distribution, and build a probabilistic 
representation of the observations using a recent sample of 
values for each pixel [15], thus providing very high quality 
results in a large variety of complex scenarios with 
multimodal backgrounds [16].  

To achieve better results in scenarios where moving objects 
and background have similar characteristics [17], some 
proposals estimate not only a background density function but 
also a foreground model [18]. Additionally, to carry out the 
detection of moving objects in sequences recorded with 
portable devices (mobiles, handy-cams, etc.), where both the 
background and foreground objects change their spatial 
positions over time, other works propose to estimate the 
background and foreground models from spatio-temporal 
reference information [19].    

Although non-parametric approaches improve the quality of 
the detections provided by other strategies, they have some 
limitations that should be considered [20]. Their main 
drawback is that they require a very large number of 
computations to be performed [13] and, thus, they incur in 
very high memory and computational costs [21]. Moreover, 
these excessive requirements are noticeably increased when, 
to detect moving objects in sequences recorded with portable 
cameras, spatio-temporal background and foreground models 
are estimated. Consequently, if these strategies are computed 
in typical Central Processing Units (CPUs), they cannot be 
suitable for AR applications operating in real-time.  

However, this important drawback can greatly be solved by 
porting these strategies to a modern programmable General 
Purpose Graphics Processing Unit (GPGPU) [22]. These 
devices are becoming commonplace in regular computers [23] 
and are even advancing into mobile computing scenarios [24]. 
They provide very good numeric performance and a high degree 
of parallelism, being capable of executing simultaneously 
hundreds or even thousands of threads concurrently [25]. As a 
consequence, several approaches for image processing that 
exploit GPGPUs have been proposed in the last few years [26], 
providing real-time implementations of computer vision 
applications on recent consumer electronic devices [27].  
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In this paper we propose a novel spatio-temporal 
background-foreground non-parametric modeling strategy for 
moving object detection in a GPGPU, which provides 
real-time high-quality results in a great variety of scenarios 
and, accordingly, can be used in the AR applications required 
by last generation portable and non-portable consumer 
electronic devices. 

II. NON-PARAMETRIC MODELING 

A. Spatio-temporal non-parametric modeling 

Let us define a pixel pn in the current image In, at time n, as 
a (D+2)-dimensional vector, xn=((cn)T,(sn)T)T   RD+2, where 
cn   RD is a vector containing appearance characteristics of 
the pixel (color, gradient, depth, etc.) and sn=(hn,wn)   R2 is a 
vector containing its coordinates. The probability density 
function for both background, β, and foreground, φ, can be 
estimated by using multidimensional kernels, from 
(D+2)-dimensional spatio-temporal reference samples, from 
the previous images into a spatial neighborhood around the 
spatial position of pn [17]. 

Once we have modeled both background and foreground, it 
is possible to evaluate the probability of pn to belong to the 
foreground class. Using Bayes’ theorem we carry out this 
evaluation as 
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where Pr(φ) is the prior probability for the foreground, 
Pr(β)=1- Pr(φ) is the prior probability for the background, and 
p(xn|β) and p(xn|φ) are, respectively, the estimated background 
and foreground density functions. 

B. Background modeling 

Let us consider a set of Nβ background reference samples, 
xβ,i=(cβ,i, sβ,i), from the Tβ previous images (Tβ ≤ Nβ). The 
probability density function that xn belongs to the image 
background can be estimated non-parametrically [19] as 
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where Σβ is a symmetric definite (D+2)×(D+2) bandwidth 
matrix that determines the “width” of the kernel K around 
each sample point. Looking for a trade-off between 
computational efficiency and quality [28], we have chosen 
here diagonal bandwidth matrices, 
 

 2
,

2
,

2
,

2
2,

2
1, ,,,diag WHD   Σ , (3) 

 
where the first D components specify the bandwidth of the 
appearance components and the last two are the spatial 
bandwidths (rows and columns) of the kernels. 

 
Fig. 1. Reference samples used to estimate the background probability 
density function. 
 

In this way, applying Gaussian kernels, the background 
likelihood can be obtained as 
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Additionally, to prevent the evaluation of reference samples 
not contributing significantly to the estimation process, we 
propose to consider exclusively the ones whose spatial 
distance (Δh, Δw) to pn satisfies that 
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In this way, a reference sample will be not considered if it 
falls outside the 99% of the spatial Gaussian kernels defined by 
σβ,H and σβ,W. Fig. 1 shows an example that relates a pixel in the 
current image (in red) with the reference samples satisfying 
equation (5). The considered reference samples are depicted in 
yellow and the discarded ones are in blue. The spatial Gaussian 
kernel that is used in the background modeling has been 
represented on the red pixel in the current image.  

C. Foreground modeling 

Let pn be a pixel in the image In, defined by the vector xn 
previously described. At first, the probability density function that 
this pixel belongs to the foreground is uniform. However, if 
moving objects have been previously detected around pn, the 
probability of observing these foreground regions at this pixel 
will increase. Therefore, the probability density function that xn 
belongs to the image foreground can be estimated as a mixture of 
a uniform function and a Gaussian kernel density function [19], 
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Fig. 2. Reference samples used to estimate the foreground probability 
density function. 
 
where Nφ is the amount of foreground samples, xφ,i=( cφ,i, s φ,i), 
stored along the previous Tφ images (Tφ ≤ Nφ), α is a mixture 
factor, γ is the constant density of a uniform random variable 
in the set of  D+2 components defined for the feature vector, 
and Σφ is the bandwidth matrix that determines the “width” of 
the Gaussian kernels, analogously to the one defined for the 
background, Σβ: 
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where the first D components specify the bandwidth of the 
appearance components and the last two are the spatial 
bandwidths (rows and columns) of the kernels. 

Just as in the background modeling and for the same 
reasons, i.e., to avoid the evaluation of reference samples not 
contributing significantly to the estimation process, we 
propose to consider exclusively the foreground reference 
samples satisfying that 
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 Fig. 2 presents an example relating a pixel in a moving 

object (in red) in the current image with the set of foreground 
reference samples satisfying equation (8). The considered 
reference samples are depicted in yellow, the discarded ones 
are in blue, and the spatial Gaussian on the red pixel is that 
used in the foreground modeling. 

III. GPU IMPLEMENTATION 

Modern GPUs have evolved to implement the stream 
processor paradigm, which is a form of Single Instruction, 
Multiple Data (SIMD) parallel processing. Under this 
paradigm, the same  series  of  operations (kernel function) are 
independently applied onto each element in a set of data 
(stream), in an unspecified order and in batches of an (a priori) 
undetermined number of elements. This computing model is 
especially suitable for applications exhibiting data parallelism, 
data locality and high compute intensity. 

  

 
Fig. 3. The areas considered for the spatial modeling of the cyan and 
magenta pixels overlap. The same occurs for all the pixels processed in 
this block. The data needed for processing the whole tile/block (dark 
orange) is therefore that depicted in light orange. 
 

The algorithm just described in the preceding sections is a 
good candidate to be implemented on a stream processor 
because it shows, without any modification, two of the three 
above-mentioned characteristics: 

 Data parallelism: for each instant in time, the computations 
leading to the classification of each pixel as foreground 
and background do not depend at all on the operations or 
results of other pixels. 

 Data locality: although many operations must be 
performed on each pixel to determine its class, the only 
output is the final decision; all the intermediate 
computations can remain within the stream processor. 

If the Gaussian functions are precomputed into lookup 
tables, the compute intensity is relatively low because for each 
pixel we read from a reference image only a few sums and 
multiplications must be performed. However, we can greatly 
increase the compute intensity and therefore the application 
throughput by means of careful memory management, as we 
explain in the remainder of this section. 

In order to execute a kernel function on a stream, the 
workload must be partitioned in execution threads, each taking 
care of some portion of the data. In our case, one execution 
thread will be responsible for one pixel. Then, execution 
threads must be grouped in thread blocks, which are the 
minimal unit of work that can be scheduled. Finally, 
depending on the size of the thread blocks and the shared 
resources they require, one or more blocks are scheduled in 
run-time to be concurrently executed by each of the execution 
units in the device (16 in our specific device). 

The architecture of the stream processor we have employed 
features three distinct types of memory: 

 Global memory: it is very large (1.5 GiB in our specific 
device) and its accessible to all threads, but it is located 
off-chip, is uncached and, therefore, has relatively low 
bandwidth and high latency. 
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Fig. 4. All threads in a block read lines cooperatively; each thread warp reads one or several 32-byte packages. Useful data (in shades of green) may not 
be 32-byte aligned, so a small additional amount of data (bright red, not shown to scale) is read together with the desired data. 
 
 Shared memory: it is relatively small (48 KiB per 

multiprocessor in our device class) and is accessible to all 
threads belonging to a same thread block. It is located 
on-chip and has very high bandwidth and low latency. It 
can be regarded as a manually managed cache. 

 Constant memory: it is very small (64 KiB), read-only 
from the stream processor and is accessible to all threads. 
It is located off-chip but it is automatically cached, which 
makes it fast if read many times. 

For the spatio-temporal modeling previously defined, we 
should theoretically consider all data in each reference image 
for each output pixel. However, reference pixels being 
weighted by Gaussian functions, we can restrict our region of 
interest to the following spatial margins (i.e. maximum 
distance in each dimension from the pixel under study), by 
eqs. 5 and 8, to consider at least 99% of the accumulated 
probability:  
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We can see in Fig. 3 that each reference pixel is input for 

many others; input data must necessarily reside in global 
memory because it is the only memory zone that is big enough 
and can be written by the host machine (CPU). In a naïve 
implementation, each execution thread would directly fetch 
from global memory the necessary data, thus reading the same 
data many times over. However, we can massively improve 
the performance of the application by reducing the number of 
accesses to the global memory. 

Since we are binding each execution thread to a pixel, each 
thread block corresponds to a tile of the image; the key idea is 
using the shared memory of each thread block to cache a 
window of the input data relevant to its threads so that each 
reference pixel be read only once from the global memory but 
many times from the shared memory. 

For the specific case of the background modeling, the 
region of interest for a block is the tile mapped to that block, 
enlarged by the mβ,W pixels at left and right directions and by 
the mφ,H  pixels at the top and bottom (Fig. 3). Therefore, each 
thread block will need to retrieve 2mβ,W+bW sub-lines of 
2mβ,H+bH pixels each. 

The shared memory region of a block can only be written 
by the execution threads in that block themselves, which can 
request data from the global memory and then write them into 
the shared memory area. The fastest way to perform this 
memory transfer is to distribute the data among the threads so 
that they cooperatively read it into the shared memory. 
However, there are some restrictions imposed by the 
architecture of our stream processor that must be observed to 
achieve best performance: 

 Execution threads in a thread block are not actually 
executed all concurrently, but they are partitioned in 
sub-blocks of 32 threads, called warps.  

 Although an execution thread can request single bytes (the 
size of each of the channels of a pixel in our images) from 
global memory, the minimal transfer unit is 32 bytes. 

 If the memory addresses of the requests from successive 
threads in the warp are also successive, the requests can be 
coalesced into a single memory transaction. 

 Transfers from global memory are always of naturally 
aligned blocks. This is, if there are two threads in a warp 
whose requests are for bytes with different addresses 
modulo 32, there will be necessarily two separate memory 
transactions, even if all the addresses in the warp were 
successive. 

Since all variables allocated in the global memory are 
always guaranteed to be at least 256-byte aligned, if we 
restrict input images to have a horizontal resolution multiple 
of 32, the first byte in every line will be 32-byte aligned, 
regardless of bit depth, denoted by bps, and the D channels per 
pixel. Then, we can use the same offsets relative to the start 
address of each line for reading all the sub-lines in the same 
block. 

As we can see in Fig. 4, h0 being the horizontal coordinate 
of the leftmost pixel in a tile/thread block, we need to read 
pixels from (h0 - mβ,H) to (h0 - mβ,H + bH - 1) inclusive. In order 
to respect alignment requirements and the number of pixels to 
be read being a multiple of the warp size, we will read from 
the byte offset    32 32,0  Dbpsmh W

up to (not 

including) the byte offset    32 32,0  Dbpsbmh WW
.     

Thus, we will read several whole 32-byte blocks per line, 
and each block will be completely read by a single warp. 
Distributing all the 32-byte blocks in all the lines to be 
retrieved uniformly among warps in the block we get the 
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Fig. 5. General flow of the program. The final detections are fed back into 
the foreground model within the GPU. 
 

TABLE I 
DESCRIPTION OF THE TEST SEQUENCES (SORTED BY INCREASING SIZE) 

Sequence 
Size  

(height x width) 
No. of 
images 

Duration (sec.) 

Wall_001 128 x 160 293 14 

Wall_002 128 x 160 287 11 

Lab_003 192 x 256 550 22 

Lab_004 192 x 256 500 20 

Lab_001 288 x 352 325 13 

Lab_002 288 x 352 380 15 

Lab_005 288 x 352 250 10 

Pets_004 288 x 352 795 31 

Pets_005 288 x 352 795 31 

Pets_002 288 x 384 500 20 

Pets_001 576 x 768 1452 58 

Pets_003 576 x 768 435 17 

Total - 6562 262 

 
maximum transfer speed from global to shared memory and 
now each thread can proceed to use the shared data to compute 
the contributions of each reference pixel to the background 
model of its own pixel. This process is followed iteratively for 
each reference image. 

For the foreground model we follow largely the same 
process. However, in this case not all the pixels that fall 
within the spatial margins of the one to be classified must 
be considered, but only those that were classified as 
foreground in the reference images. This requires only a 
small adaptation of the background modeling: because the 
final product of our computation is, indeed (see Fig. 5), a 
binary decision on the class of each pixel, we need only 
retrieve these past images and use them as masks for the 
reference pixels. In order to read these images we will use 
the same cooperative reading procedure that we described 
for color images. 

If mβ,H=mφ,H and mβ,W=mφ,W the color data to be read is 
the same for the background and foreground models. If the 
spatial margins for the foreground are bigger, the color data 
needed for the background are a subset of those needed for 
the foreground. Therefore, we can use the spatial margins 
of the foreground and process both background and 
foreground in the same kernel function, thus avoiding read 
the same data twice.  

IV. RESULTS 

We have tested our system in several indoor and outdoor 
sequences with different sizes, recorded with non-stabilized 
cameras, and containing critical situations such as dynamic 
backgrounds, multiple moving objects or illumination 
changes. These sequences have been extracted from the 
PETS database [29] (Pets_00x), the Wallflower database 
[30] (Wall_00x) and our own database (Lab_00x). Their 
main characteristics are shown in Table I.  

We have used a buffer of Nβ=150 images and a buffer of 
Tφ=10 images to model the background and the foreground, 
respectively. For simplicity, we have assumed that the prior 
probabilities of the two classes, background and 
foreground, is identical, so Pr(β)=Pr(φ)=½. The appearance 
information of the pixels are their RGB color components, 
so D=3, and we have set the background and foreground 
appearance bandwidths as σβ,j=σφ,j=16 in all our 
experiments. We have also used precalculated lookup 
tables for the kernel function values given the bandwidth 
matrices, Σβ and Σφ, and the differences (xn -xβ,i)  and (xn -x 
φ,i). 

 The achieved computational efficiency has been 
compared to that obtained with a 2.66 GHz CPU with 2 GB 
RAM, where lookup tables have been used as well. 

A. Background modeling 

In the first place we have analyzed the computational cost 
in the background modeling using several block sizes (bH, bW) 
and different background spatial margins (mβ,H, mβ,W). The 
obtained results appear in Fig. 6, which shows how processing 
times depend exponentially on the spatial margin as a general 
rule. However, there is no optimal block size for all spatial 
margins. To an extent, small blocks perform better for small 
spatial margins and large blocks perform better for            
large spatial margins. The main factors we have identified as  



122  IEEE Transactions on Consumer Electronics, Vol. 58, No. 1, February 2012 

 
Fig. 6. Computational cost in background modeling for different block 
sizes (bH, bW) and different spatial margins (mβ,H, mβ,W). 
 
responsible for that behavior are: 
 Duplicated data: in previous sections we have seen how for 

each tile/block a region-of-interest window must be read. The 
larger the spatial margins in comparison to the block size, the 
more times each datum must be read from global memory. 

 Synchronization costs: each region-of-interest is 
cooperatively read by all the threads in a block. Before 
each thread can proceed with the computation, a 
synchronization barrier is necessary. The larger the block 
size, the more threads need to be synchronized. 

 Scheduling overhead: dispatching a block to a 
multiprocessor adds a small overhead to the processing 
time. If each block does too little work (i.e. is too small), 
this overhead is significant. 

To avoid large amounts of false detections in sequences 
containing local or global background displacements (such as 
those containing non-static background regions or sequences 
recorded with portable or non-stabilized cameras) the use of 
spatial information in the background modeling is 
essential [19]. In addition, more significant background 
displacements require the use of more spatial information 
(larger spatial bandwidths). However, the performed 
experiments have shown that using small spatial bandwidths 
the background is correctly modeled and most false detections 
due to local or global background displacements are avoided. 

 Fig. 7 shows some obtained detections in two sequences 
with non-static backgrounds. The first column presents a 
sequence with a local background displacement (a tree shaken 
by the wind), while the second column shows a sequence with a 
global background displacement (a vibration of the camera). 
The results in this figure allow us to appreciate that using 

 132 ,,,,  WHWH mm    most false detections 

due to background displacements are avoided. Therefore, as 
larger spatial bandwidths increase the computational cost (see 
Fig. 6), we have decided to use 32,,  WH    in all the 

test sequences. 
Table II presents the mean processing times (once the 

background model has been fully initialized) obtained with the 

 
Fig. 7. Moving object detection with different spatial bandwidths in the 
background modeling. (a) Original images from two sequences. 
(b) Detections with σβ,H= σβ,W=0.01. (c) Detections with σβ,H= σβ,W=√2/3. 
 

TABLE II 
MEAN PROCESSING TIMES (MILLISECONDS) IN BACKGROUND MODELING 

Sequence CPU GPGPU Speedup 

Wall_001 1697 9 199× 

Wall_002 1707 10 171× 

Lab_003 3958 19 206× 

Lab_004 3972 18 215× 

Lab_001 8551 38 227× 

Lab_002 8415 38 221× 

Lab_005 8397 38 220× 

Pets_004 8549 35 245× 

Pets_005 8517 35 243× 

Pets_002 9162 39 238× 

Pets_001 33014 145 228× 

Pets_003 33108 139 238× 

 

proposed implementation, compared to the results obtained 
with a CPU. These results show that the computational cost to 
model the background is roughly proportional to the size of 
the sequences and demonstrate that the proposed GPGPU-
based implementation improves the computational efficiency 
very significantly. 

B. Foreground modeling 

As has been done for the background modeling, in the first 
place we have analyzed the computational cost using several 
block sizes (bH, bW) and different foreground spatial margins 
(mφ,H, mφ,W). Fig. 8 summarizes the measured processing times 
for several block sizes. Unsurprisingly, since the nature of the 
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Fig. 8. Computational cost in foreground modeling for different block 
sizes (bH, bW) and different spatial margins (mφ,H, mφ,W). 

 
TABLE III 

MEAN PROCESSING TIMES (MILLISECONDS) IN FOREGROUND MODELING 

Sequence 
Foreground 

pixels 
Reference 

pixels 
CPU GPGPU Speedup 

Wall_001 6.79 % 30.12 % 1415 16.62 85× 

Wall_002 1.52 % 2.56 % 86 17.79 5× 

Lab_003 2.72 % 13.11 % 2057 37.20 55× 

Lab_004 2.79 % 31.35 % 7611 36.42 209× 

Lab_001 1.00 % 12.24 % 12154 70.06 173× 

Lab_002 2.47 % 29.49 % 19440 72.21 269× 

Lab_005 0.94 % 9.94 % 8597 66.90 129× 

Pets_004 5.40 % 14.55 % 11218 76.52 147× 

Pets_005 6.27 % 17.96 % 14478 77.05 188× 

Pets_002 0.00 % 0.00 % 9 76.98 9÷ 

Pets_001 1.12 % 5.57 % 16944 322.21 53× 

Pets_003 0.37 % 7.39 % 19125 296.03 65× 

 
background and foreground models is largely the same, the 
same dependencies between block sizes and spatial margins 
can be found: large spatial margins are best processed using 
large block sizes, for the same reasons explained earlier. 

After performing numerous experiments we have found that 
using a spatial margin of mφ,H = mφ,W = 12 (σH = σW ≈ 5.5) is 
sufficient to take into account most reference data in the Tφ 
=10 reference images (see Fig. 2). Therefore, we have decided 
to use these values.  

Taking into account the spatial margins finally used to 
model both the background (mβ,H=mβ,W=1) and the foreground 
(mφ,H=mφ,W=12), and considering the performance obtained 
with the analyzed block sizes (Fig. 6 and Fig. 8), we have 
decided to use blocks of size (bH,bW)=(16,16). 

Table III shows the mean processing times (compared to the 
results obtained with a CPU) in foreground modeling, using 
the above mentioned block sizes and spatial margins. These  

 
Fig. 9. Computational cost in foreground modeling along a sequence with 
325 images. (a) Representative original images. (b) Final detections. 
(c) Number of foreground reference samples. (d) Processing time in a 
CPU. (e) Processing time in a GPGPU.  
 

results demonstrate that, similarly to the background timing 
analysis (Table II), the cost of modeling mainly depends on 
the size of images. Additionally, data from this table show 
that, in contrast to the results obtained in a CPU, where the 
foreground computational cost is highly dependent on the 
number of reference pixels, the proposed implementation 
reduces drastically that dependence.  

Fig. 9 illustrates this dependence over a sequence of 325 
frames. The first row of images (Fig. 9.a) shows some 
representative frames of the sequence, while the second (Fig. 
9.b) presents the obtained detections. Fig. 9.c shows the 
amount of used reference data (Nφ) along the sequence, Fig. 
9.d presents the computational cost using a CPU, and Fig. 9.e 
details the computational cost with the proposed 
implementation in a GPGPU. As can be observed, while the 
cost in a CPU is roughly proportional to Nφ, thanks to the 
GPGPU-based implementation we have removed this 
dependence.  While in most cases this is an advantage, 
because it allows to establish a maximum processing time 
depending on the image size of the sequences, this can be a 
disadvantage in sequences with low amount of motion 
(e.g.Pets_002), because in the GPGPU-based implementation 
we incur a minimum cost unconditionally. 

C. Final detections 

 Finally, Fig. 10 and Table IV show some final results: Fig. 
10 compares the quality of the detections obtained with the 
proposed strategy and with a MoG-based algorithm; Table 
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Fig. 10. Results in three different sequences. (a) Original images. 
(b) Ground truth. (c) Results using the MoG method. (d) Results by 
applying the proposed strategy. 
 
 

TABLE IV 
TOTAL MEAN PROCESSING TIMES (MILLISECONDS)  

Sequence CPU GPGPU Speedup fps 

Wall_001 2678 27 101× 38 

Wall_002 1348 28 48× 36 

Lab_003 5476 57 96× 17 

Lab_004 10992 56 195× 18 

Lab_001 18732 100 187× 10 

Lab_002 26194 102 256× 10 

Lab_005 14475 97 149× 10 

Pets_004 18960 107 178× 9 

Pets_005 22194 107 207× 9 

Pets_002 7797 107 73× 9 

Pets_001 48253 462 104× 2 

Pets_003 46608 406 115× 2 

 

IV shows the final computational costs, considering jointly the 
background and the foreground modeling. 

The detections shown in Fig. 10 demonstrate that the 
proposed non-parametric strategy improves the quality of the 
detections provided by other popular strategies in multiple 
complex scenarios: in sequences with moving objects similar 
to some background regions (Pets_004), in sequences with 
dynamic backgrounds (Wall_002), or in sequences with 
illumination changes (Pets_002). 

Results in Table IV allow us to appreciate that our strategy 
can very significantly improve the results on a CPU. 
Furthermore, as shown by the results of the last column of the 
table, we are able to process multiple images per second (even 
for very large sequences as Pets_001 and Pets_003). 

Consequently, since the proposed strategy provides high 
quality detections and is also able to process at high speed, it 
seems ideal for integration into AR applications required by 
last generation consumer electronic devices. 

V. CONCLUSION 

We have described a novel background-foreground 
non-parametric-based moving object detection strategy that 
we have efficiently implemented in a GPGPU.  

By modeling both background and foreground from 
spatio-temporal reference information we are able to provide 
real-time high quality detections in sequences recorded with 
portable devices (mobiles, handy-cams, etc) in a large variety 
of multimodal and complex scenarios (e.g. dynamic 
backgrounds, multiple moving objects or illumination 
changes). Therefore, the proposed strategy is suitable for AR 
tools required by the last generation of consumer electronic 
devices endowed with integrated smart cameras. 
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