
C. Cuevas et al.: Moving Object Detection for Real-Time Augmented Reality Applications in a GPGPU 117

Manuscript received 01/14/12
Current version published 03/21/12
Electronic version published 03/21/12. 0098 3063/12/$20.00 © 2012 IEEE

Moving Object Detection for Real-Time
Augmented Reality Applications in a GPGPU

Carlos Cuevas, Daniel Berjón, Francisco Morán, and Narciso García

Abstract — The last generation of consumer electronic

devices is endowed with Augmented Reality (AR) tools. These
tools require moving object detection strategies, which should
be fast and efficient, to carry out higher level object analysis
tasks. We propose a lightweight spatio-temporal-based
non-parametric background-foreground modeling strategy in
a General Purpose Graphics Processing Unit (GPGPU),
which provides real-time high-quality results in a great
variety of scenarios and is suitable for AR applications1.

Index Terms — Moving object detection, real-time, augmented
reality, spatio-temporal non-parametric modeling, GPGPU.

I. INTRODUCTION

The last generation of consumer electronic devices, such as
smart-phones, tablets, or home and portable video game
consoles, is endowed with Augmented Reality (AR) tools [1].
These tools require new, fast and efficient (i.e. lightweight)
computer vision applications [2] where moving object
detection is a key step for several high level analysis tasks
such as segmentation, tracking, classification, or event
detection [3].

In the last years, a large number of moving object
segmentation approaches has been proposed in the literature [4].
Some of these algorithms aim to maximize the speed and to
reduce the memory requirements [5], providing satisfactory
results for short sequences with quasi-stationary backgrounds [6].
However, these strategies are not efficient in critical situations
such as abrupt or gradual illumination changes, shadows, noisy
sequences, or dynamic backgrounds (containing fountains, flags,
trees, sea waves, rain, etc.) [7], and depend on several thresholds
that must be manually set by users [8].

To overcome these limitations, many multimodal strategies
have been also proposed [9], which are able to model multiple
states for each pixel. One key multimodal reference is the
Mixture of Gaussians (MoGs) method [10], which uses a
combination of several Gaussians to model the variations of
each image pixel. Other multimodal techniques [11] use
Hidden Markov Models (HMMs) to try and model the
background variations by representing the changes in the
sequences with different states. However, these strategies have
important limitations: MoG-based methods are not flexible

1 This work has been partially supported by the Ministerio de Ciencia e

Innovación of the Spanish Government under project TEC2010-20412
(Enhanced 3DTV).

Carlos Cuevas, Daniel Berjón, Francisco Morán, and Narciso García are
with Grupo de Tratamiento de Imágenes (GTI), Universidad Politécnica de
Madrid (UPM), 28040, Madrid, Spain (e-mail: {ccr, dbd, fmb,
narciso}@gti.ssr.upm.es).

enough to model complex background density functions [12],
and in HMM-based methods the selection of appropriate
models is difficult and the initialization process is
complex [13].

More recently, non-parametric kernel density estimation
methods have been proposed to improve the quality of the
detections in environments where the pixel variations cannot
be described with the abovementioned parametric
strategies [14]. These techniques do not consider the values of
the pixels as a particular distribution, and build a probabilistic
representation of the observations using a recent sample of
values for each pixel [15], thus providing very high quality
results in a large variety of complex scenarios with
multimodal backgrounds [16].

To achieve better results in scenarios where moving objects
and background have similar characteristics [17], some
proposals estimate not only a background density function but
also a foreground model [18]. Additionally, to carry out the
detection of moving objects in sequences recorded with
portable devices (mobiles, handy-cams, etc.), where both the
background and foreground objects change their spatial
positions over time, other works propose to estimate the
background and foreground models from spatio-temporal
reference information [19].

Although non-parametric approaches improve the quality of
the detections provided by other strategies, they have some
limitations that should be considered [20]. Their main
drawback is that they require a very large number of
computations to be performed [13] and, thus, they incur in
very high memory and computational costs [21]. Moreover,
these excessive requirements are noticeably increased when,
to detect moving objects in sequences recorded with portable
cameras, spatio-temporal background and foreground models
are estimated. Consequently, if these strategies are computed
in typical Central Processing Units (CPUs), they cannot be
suitable for AR applications operating in real-time.

However, this important drawback can greatly be solved by
porting these strategies to a modern programmable General
Purpose Graphics Processing Unit (GPGPU) [22]. These
devices are becoming commonplace in regular computers [23]
and are even advancing into mobile computing scenarios [24].
They provide very good numeric performance and a high degree
of parallelism, being capable of executing simultaneously
hundreds or even thousands of threads concurrently [25]. As a
consequence, several approaches for image processing that
exploit GPGPUs have been proposed in the last few years [26],
providing real-time implementations of computer vision
applications on recent consumer electronic devices [27].

118 IEEE Transactions on Consumer Electronics, Vol. 58, No. 1, February 2012

In this paper we propose a novel spatio-temporal
background-foreground non-parametric modeling strategy for
moving object detection in a GPGPU, which provides
real-time high-quality results in a great variety of scenarios
and, accordingly, can be used in the AR applications required
by last generation portable and non-portable consumer
electronic devices.

II. NON-PARAMETRIC MODELING

A. Spatio-temporal non-parametric modeling

Let us define a pixel pn in the current image In, at time n, as
a (D+2)-dimensional vector, xn=((cn)T,(sn)T)T RD+2, where
cn RD is a vector containing appearance characteristics of
the pixel (color, gradient, depth, etc.) and sn=(hn,wn) R2 is a
vector containing its coordinates. The probability density
function for both background, β, and foreground, φ, can be
estimated by using multidimensional kernels, from
(D+2)-dimensional spatio-temporal reference samples, from
the previous images into a spatial neighborhood around the
spatial position of pn [17].

Once we have modeled both background and foreground, it
is possible to evaluate the probability of pn to belong to the
foreground class. Using Bayes’ theorem we carry out this
evaluation as

|Pr|Pr

|Pr
|Pr

nn

n
n

pp

p

xx

x
x

 , (1)

where Pr(φ) is the prior probability for the foreground,
Pr(β)=1- Pr(φ) is the prior probability for the background, and
p(xn|β) and p(xn|φ) are, respectively, the estimated background
and foreground density functions.

B. Background modeling

Let us consider a set of Nβ background reference samples,
xβ,i=(cβ,i, sβ,i), from the Tβ previous images (Tβ ≤ Nβ). The
probability density function that xn belongs to the image
background can be estimated non-parametrically [19] as

N

i
i

nn K
N

p
1

,
2

12
11

| xxΣΣx , (2)

where Σβ is a symmetric definite (D+2)×(D+2) bandwidth
matrix that determines the “width” of the kernel K around
each sample point. Looking for a trade-off between
computational efficiency and quality [28], we have chosen
here diagonal bandwidth matrices,

 2
,

2
,

2
,

2
2,

2
1, ,,,diag WHD Σ , (3)

where the first D components specify the bandwidth of the
appearance components and the last two are the spatial
bandwidths (rows and columns) of the kernels.

Fig. 1. Reference samples used to estimate the background probability
density function.

In this way, applying Gaussian kernels, the background
likelihood can be obtained as

 .

,2
exp

,

1

2

1

|

1

2

1

2
,

2

112

N

i

D

j

i
n

D

n

jj

jj

jjN

p

Σ

xx

Σ

x

(4)

Additionally, to prevent the evaluation of reference samples
not contributing significantly to the estimation process, we
propose to consider exclusively the ones whose spatial
distance (Δh, Δw) to pn satisfies that

 2

1

2
,,,

,,
2

, 3

w

h
wh

WWH

WHH

 . (5)

In this way, a reference sample will be not considered if it
falls outside the 99% of the spatial Gaussian kernels defined by
σβ,H and σβ,W. Fig. 1 shows an example that relates a pixel in the
current image (in red) with the reference samples satisfying
equation (5). The considered reference samples are depicted in
yellow and the discarded ones are in blue. The spatial Gaussian
kernel that is used in the background modeling has been
represented on the red pixel in the current image.

C. Foreground modeling

Let pn be a pixel in the image In, defined by the vector xn
previously described. At first, the probability density function that
this pixel belongs to the foreground is uniform. However, if
moving objects have been previously detected around pn, the
probability of observing these foreground regions at this pixel
will increase. Therefore, the probability density function that xn
belongs to the image foreground can be estimated as a mixture of
a uniform function and a Gaussian kernel density function [19],

 ,

,2
exp

,

1

2

1

|

1

2

1

2
,

12 2
1

N

i

D

j

i
n

D

n

jj

jj

jjN

p

Σ

xx

Σ

x
(6)

C. Cuevas et al.: Moving Object Detection for Real-Time Augmented Reality Applications in a GPGPU 119

Fig. 2. Reference samples used to estimate the foreground probability
density function.

where Nφ is the amount of foreground samples, xφ,i=(cφ,i, s φ,i),
stored along the previous Tφ images (Tφ ≤ Nφ), α is a mixture
factor, γ is the constant density of a uniform random variable
in the set of D+2 components defined for the feature vector,
and Σφ is the bandwidth matrix that determines the “width” of
the Gaussian kernels, analogously to the one defined for the
background, Σβ:

 2
,

2
,

2
,

2
2,

2
1, ,,,diag WHD Σ , (7)

where the first D components specify the bandwidth of the
appearance components and the last two are the spatial
bandwidths (rows and columns) of the kernels.

Just as in the background modeling and for the same
reasons, i.e., to avoid the evaluation of reference samples not
contributing significantly to the estimation process, we
propose to consider exclusively the foreground reference
samples satisfying that

 2

1

2
,,,

,,
2
, 3

w

h
wh

WWH

WHH

 . (8)

 Fig. 2 presents an example relating a pixel in a moving

object (in red) in the current image with the set of foreground
reference samples satisfying equation (8). The considered
reference samples are depicted in yellow, the discarded ones
are in blue, and the spatial Gaussian on the red pixel is that
used in the foreground modeling.

III. GPU IMPLEMENTATION

Modern GPUs have evolved to implement the stream
processor paradigm, which is a form of Single Instruction,
Multiple Data (SIMD) parallel processing. Under this
paradigm, the same series of operations (kernel function) are
independently applied onto each element in a set of data
(stream), in an unspecified order and in batches of an (a priori)
undetermined number of elements. This computing model is
especially suitable for applications exhibiting data parallelism,
data locality and high compute intensity.

Fig. 3. The areas considered for the spatial modeling of the cyan and
magenta pixels overlap. The same occurs for all the pixels processed in
this block. The data needed for processing the whole tile/block (dark
orange) is therefore that depicted in light orange.

The algorithm just described in the preceding sections is a
good candidate to be implemented on a stream processor
because it shows, without any modification, two of the three
above-mentioned characteristics:

 Data parallelism: for each instant in time, the computations
leading to the classification of each pixel as foreground
and background do not depend at all on the operations or
results of other pixels.

 Data locality: although many operations must be
performed on each pixel to determine its class, the only
output is the final decision; all the intermediate
computations can remain within the stream processor.

If the Gaussian functions are precomputed into lookup
tables, the compute intensity is relatively low because for each
pixel we read from a reference image only a few sums and
multiplications must be performed. However, we can greatly
increase the compute intensity and therefore the application
throughput by means of careful memory management, as we
explain in the remainder of this section.

In order to execute a kernel function on a stream, the
workload must be partitioned in execution threads, each taking
care of some portion of the data. In our case, one execution
thread will be responsible for one pixel. Then, execution
threads must be grouped in thread blocks, which are the
minimal unit of work that can be scheduled. Finally,
depending on the size of the thread blocks and the shared
resources they require, one or more blocks are scheduled in
run-time to be concurrently executed by each of the execution
units in the device (16 in our specific device).

The architecture of the stream processor we have employed
features three distinct types of memory:

 Global memory: it is very large (1.5 GiB in our specific
device) and its accessible to all threads, but it is located
off-chip, is uncached and, therefore, has relatively low
bandwidth and high latency.

120 IEEE Transactions on Consumer Electronics, Vol. 58, No. 1, February 2012

Fig. 4. All threads in a block read lines cooperatively; each thread warp reads one or several 32-byte packages. Useful data (in shades of green) may not
be 32-byte aligned, so a small additional amount of data (bright red, not shown to scale) is read together with the desired data.

 Shared memory: it is relatively small (48 KiB per

multiprocessor in our device class) and is accessible to all
threads belonging to a same thread block. It is located
on-chip and has very high bandwidth and low latency. It
can be regarded as a manually managed cache.

 Constant memory: it is very small (64 KiB), read-only
from the stream processor and is accessible to all threads.
It is located off-chip but it is automatically cached, which
makes it fast if read many times.

For the spatio-temporal modeling previously defined, we
should theoretically consider all data in each reference image
for each output pixel. However, reference pixels being
weighted by Gaussian functions, we can restrict our region of
interest to the following spatial margins (i.e. maximum
distance in each dimension from the pixel under study), by
eqs. 5 and 8, to consider at least 99% of the accumulated
probability:

WWHH

WWHH

mm

mm

,,,,

,,,,

2

3

2

3

2

3

2

3

 (9)

We can see in Fig. 3 that each reference pixel is input for

many others; input data must necessarily reside in global
memory because it is the only memory zone that is big enough
and can be written by the host machine (CPU). In a naïve
implementation, each execution thread would directly fetch
from global memory the necessary data, thus reading the same
data many times over. However, we can massively improve
the performance of the application by reducing the number of
accesses to the global memory.

Since we are binding each execution thread to a pixel, each
thread block corresponds to a tile of the image; the key idea is
using the shared memory of each thread block to cache a
window of the input data relevant to its threads so that each
reference pixel be read only once from the global memory but
many times from the shared memory.

For the specific case of the background modeling, the
region of interest for a block is the tile mapped to that block,
enlarged by the mβ,W pixels at left and right directions and by
the mφ,H pixels at the top and bottom (Fig. 3). Therefore, each
thread block will need to retrieve 2mβ,W+bW sub-lines of
2mβ,H+bH pixels each.

The shared memory region of a block can only be written
by the execution threads in that block themselves, which can
request data from the global memory and then write them into
the shared memory area. The fastest way to perform this
memory transfer is to distribute the data among the threads so
that they cooperatively read it into the shared memory.
However, there are some restrictions imposed by the
architecture of our stream processor that must be observed to
achieve best performance:

 Execution threads in a thread block are not actually
executed all concurrently, but they are partitioned in
sub-blocks of 32 threads, called warps.

 Although an execution thread can request single bytes (the
size of each of the channels of a pixel in our images) from
global memory, the minimal transfer unit is 32 bytes.

 If the memory addresses of the requests from successive
threads in the warp are also successive, the requests can be
coalesced into a single memory transaction.

 Transfers from global memory are always of naturally
aligned blocks. This is, if there are two threads in a warp
whose requests are for bytes with different addresses
modulo 32, there will be necessarily two separate memory
transactions, even if all the addresses in the warp were
successive.

Since all variables allocated in the global memory are
always guaranteed to be at least 256-byte aligned, if we
restrict input images to have a horizontal resolution multiple
of 32, the first byte in every line will be 32-byte aligned,
regardless of bit depth, denoted by bps, and the D channels per
pixel. Then, we can use the same offsets relative to the start
address of each line for reading all the sub-lines in the same
block.

As we can see in Fig. 4, h0 being the horizontal coordinate
of the leftmost pixel in a tile/thread block, we need to read
pixels from (h0 - mβ,H) to (h0 - mβ,H + bH - 1) inclusive. In order
to respect alignment requirements and the number of pixels to
be read being a multiple of the warp size, we will read from
the byte offset 32 32,0 Dbpsmh W

up to (not

including) the byte offset 32 32,0 Dbpsbmh WW
.

Thus, we will read several whole 32-byte blocks per line,
and each block will be completely read by a single warp.
Distributing all the 32-byte blocks in all the lines to be
retrieved uniformly among warps in the block we get the

C. Cuevas et al.: Moving Object Detection for Real-Time Augmented Reality Applications in a GPGPU 121

Fig. 5. General flow of the program. The final detections are fed back into
the foreground model within the GPU.

TABLE I
DESCRIPTION OF THE TEST SEQUENCES (SORTED BY INCREASING SIZE)

Sequence
Size

(height x width)
No. of
images

Duration (sec.)

Wall_001 128 x 160 293 14

Wall_002 128 x 160 287 11

Lab_003 192 x 256 550 22

Lab_004 192 x 256 500 20

Lab_001 288 x 352 325 13

Lab_002 288 x 352 380 15

Lab_005 288 x 352 250 10

Pets_004 288 x 352 795 31

Pets_005 288 x 352 795 31

Pets_002 288 x 384 500 20

Pets_001 576 x 768 1452 58

Pets_003 576 x 768 435 17

Total - 6562 262

maximum transfer speed from global to shared memory and
now each thread can proceed to use the shared data to compute
the contributions of each reference pixel to the background
model of its own pixel. This process is followed iteratively for
each reference image.

For the foreground model we follow largely the same
process. However, in this case not all the pixels that fall
within the spatial margins of the one to be classified must
be considered, but only those that were classified as
foreground in the reference images. This requires only a
small adaptation of the background modeling: because the
final product of our computation is, indeed (see Fig. 5), a
binary decision on the class of each pixel, we need only
retrieve these past images and use them as masks for the
reference pixels. In order to read these images we will use
the same cooperative reading procedure that we described
for color images.

If mβ,H=mφ,H and mβ,W=mφ,W the color data to be read is
the same for the background and foreground models. If the
spatial margins for the foreground are bigger, the color data
needed for the background are a subset of those needed for
the foreground. Therefore, we can use the spatial margins
of the foreground and process both background and
foreground in the same kernel function, thus avoiding read
the same data twice.

IV. RESULTS

We have tested our system in several indoor and outdoor
sequences with different sizes, recorded with non-stabilized
cameras, and containing critical situations such as dynamic
backgrounds, multiple moving objects or illumination
changes. These sequences have been extracted from the
PETS database [29] (Pets_00x), the Wallflower database
[30] (Wall_00x) and our own database (Lab_00x). Their
main characteristics are shown in Table I.

We have used a buffer of Nβ=150 images and a buffer of
Tφ=10 images to model the background and the foreground,
respectively. For simplicity, we have assumed that the prior
probabilities of the two classes, background and
foreground, is identical, so Pr(β)=Pr(φ)=½. The appearance
information of the pixels are their RGB color components,
so D=3, and we have set the background and foreground
appearance bandwidths as σβ,j=σφ,j=16 in all our
experiments. We have also used precalculated lookup
tables for the kernel function values given the bandwidth
matrices, Σβ and Σφ, and the differences (xn -xβ,i) and (xn -x
φ,i).

 The achieved computational efficiency has been
compared to that obtained with a 2.66 GHz CPU with 2 GB
RAM, where lookup tables have been used as well.

A. Background modeling

In the first place we have analyzed the computational cost
in the background modeling using several block sizes (bH, bW)
and different background spatial margins (mβ,H, mβ,W). The
obtained results appear in Fig. 6, which shows how processing
times depend exponentially on the spatial margin as a general
rule. However, there is no optimal block size for all spatial
margins. To an extent, small blocks perform better for small
spatial margins and large blocks perform better for
large spatial margins. The main factors we have identified as

122 IEEE Transactions on Consumer Electronics, Vol. 58, No. 1, February 2012

Fig. 6. Computational cost in background modeling for different block
sizes (bH, bW) and different spatial margins (mβ,H, mβ,W).

responsible for that behavior are:
 Duplicated data: in previous sections we have seen how for

each tile/block a region-of-interest window must be read. The
larger the spatial margins in comparison to the block size, the
more times each datum must be read from global memory.

 Synchronization costs: each region-of-interest is
cooperatively read by all the threads in a block. Before
each thread can proceed with the computation, a
synchronization barrier is necessary. The larger the block
size, the more threads need to be synchronized.

 Scheduling overhead: dispatching a block to a
multiprocessor adds a small overhead to the processing
time. If each block does too little work (i.e. is too small),
this overhead is significant.

To avoid large amounts of false detections in sequences
containing local or global background displacements (such as
those containing non-static background regions or sequences
recorded with portable or non-stabilized cameras) the use of
spatial information in the background modeling is
essential [19]. In addition, more significant background
displacements require the use of more spatial information
(larger spatial bandwidths). However, the performed
experiments have shown that using small spatial bandwidths
the background is correctly modeled and most false detections
due to local or global background displacements are avoided.

 Fig. 7 shows some obtained detections in two sequences
with non-static backgrounds. The first column presents a
sequence with a local background displacement (a tree shaken
by the wind), while the second column shows a sequence with a
global background displacement (a vibration of the camera).
The results in this figure allow us to appreciate that using

 132 ,,,, WHWH mm most false detections

due to background displacements are avoided. Therefore, as
larger spatial bandwidths increase the computational cost (see
Fig. 6), we have decided to use 32,, WH in all the

test sequences.
Table II presents the mean processing times (once the

background model has been fully initialized) obtained with the

Fig. 7. Moving object detection with different spatial bandwidths in the
background modeling. (a) Original images from two sequences.
(b) Detections with σβ,H= σβ,W=0.01. (c) Detections with σβ,H= σβ,W=√2/3.

TABLE II
MEAN PROCESSING TIMES (MILLISECONDS) IN BACKGROUND MODELING

Sequence CPU GPGPU Speedup

Wall_001 1697 9 199×

Wall_002 1707 10 171×

Lab_003 3958 19 206×

Lab_004 3972 18 215×

Lab_001 8551 38 227×

Lab_002 8415 38 221×

Lab_005 8397 38 220×

Pets_004 8549 35 245×

Pets_005 8517 35 243×

Pets_002 9162 39 238×

Pets_001 33014 145 228×

Pets_003 33108 139 238×

proposed implementation, compared to the results obtained
with a CPU. These results show that the computational cost to
model the background is roughly proportional to the size of
the sequences and demonstrate that the proposed GPGPU-
based implementation improves the computational efficiency
very significantly.

B. Foreground modeling

As has been done for the background modeling, in the first
place we have analyzed the computational cost using several
block sizes (bH, bW) and different foreground spatial margins
(mφ,H, mφ,W). Fig. 8 summarizes the measured processing times
for several block sizes. Unsurprisingly, since the nature of the

C. Cuevas et al.: Moving Object Detection for Real-Time Augmented Reality Applications in a GPGPU 123

Fig. 8. Computational cost in foreground modeling for different block
sizes (bH, bW) and different spatial margins (mφ,H, mφ,W).

TABLE III

MEAN PROCESSING TIMES (MILLISECONDS) IN FOREGROUND MODELING

Sequence
Foreground

pixels
Reference

pixels
CPU GPGPU Speedup

Wall_001 6.79 % 30.12 % 1415 16.62 85×

Wall_002 1.52 % 2.56 % 86 17.79 5×

Lab_003 2.72 % 13.11 % 2057 37.20 55×

Lab_004 2.79 % 31.35 % 7611 36.42 209×

Lab_001 1.00 % 12.24 % 12154 70.06 173×

Lab_002 2.47 % 29.49 % 19440 72.21 269×

Lab_005 0.94 % 9.94 % 8597 66.90 129×

Pets_004 5.40 % 14.55 % 11218 76.52 147×

Pets_005 6.27 % 17.96 % 14478 77.05 188×

Pets_002 0.00 % 0.00 % 9 76.98 9÷

Pets_001 1.12 % 5.57 % 16944 322.21 53×

Pets_003 0.37 % 7.39 % 19125 296.03 65×

background and foreground models is largely the same, the
same dependencies between block sizes and spatial margins
can be found: large spatial margins are best processed using
large block sizes, for the same reasons explained earlier.

After performing numerous experiments we have found that
using a spatial margin of mφ,H = mφ,W = 12 (σH = σW ≈ 5.5) is
sufficient to take into account most reference data in the Tφ
=10 reference images (see Fig. 2). Therefore, we have decided
to use these values.

Taking into account the spatial margins finally used to
model both the background (mβ,H=mβ,W=1) and the foreground
(mφ,H=mφ,W=12), and considering the performance obtained
with the analyzed block sizes (Fig. 6 and Fig. 8), we have
decided to use blocks of size (bH,bW)=(16,16).

Table III shows the mean processing times (compared to the
results obtained with a CPU) in foreground modeling, using
the above mentioned block sizes and spatial margins. These

Fig. 9. Computational cost in foreground modeling along a sequence with
325 images. (a) Representative original images. (b) Final detections.
(c) Number of foreground reference samples. (d) Processing time in a
CPU. (e) Processing time in a GPGPU.

results demonstrate that, similarly to the background timing
analysis (Table II), the cost of modeling mainly depends on
the size of images. Additionally, data from this table show
that, in contrast to the results obtained in a CPU, where the
foreground computational cost is highly dependent on the
number of reference pixels, the proposed implementation
reduces drastically that dependence.

Fig. 9 illustrates this dependence over a sequence of 325
frames. The first row of images (Fig. 9.a) shows some
representative frames of the sequence, while the second (Fig.
9.b) presents the obtained detections. Fig. 9.c shows the
amount of used reference data (Nφ) along the sequence, Fig.
9.d presents the computational cost using a CPU, and Fig. 9.e
details the computational cost with the proposed
implementation in a GPGPU. As can be observed, while the
cost in a CPU is roughly proportional to Nφ, thanks to the
GPGPU-based implementation we have removed this
dependence. While in most cases this is an advantage,
because it allows to establish a maximum processing time
depending on the image size of the sequences, this can be a
disadvantage in sequences with low amount of motion
(e.g.Pets_002), because in the GPGPU-based implementation
we incur a minimum cost unconditionally.

C. Final detections

 Finally, Fig. 10 and Table IV show some final results: Fig.
10 compares the quality of the detections obtained with the
proposed strategy and with a MoG-based algorithm; Table

124 IEEE Transactions on Consumer Electronics, Vol. 58, No. 1, February 2012

Fig. 10. Results in three different sequences. (a) Original images.
(b) Ground truth. (c) Results using the MoG method. (d) Results by
applying the proposed strategy.

TABLE IV
TOTAL MEAN PROCESSING TIMES (MILLISECONDS)

Sequence CPU GPGPU Speedup fps

Wall_001 2678 27 101× 38

Wall_002 1348 28 48× 36

Lab_003 5476 57 96× 17

Lab_004 10992 56 195× 18

Lab_001 18732 100 187× 10

Lab_002 26194 102 256× 10

Lab_005 14475 97 149× 10

Pets_004 18960 107 178× 9

Pets_005 22194 107 207× 9

Pets_002 7797 107 73× 9

Pets_001 48253 462 104× 2

Pets_003 46608 406 115× 2

IV shows the final computational costs, considering jointly the
background and the foreground modeling.

The detections shown in Fig. 10 demonstrate that the
proposed non-parametric strategy improves the quality of the
detections provided by other popular strategies in multiple
complex scenarios: in sequences with moving objects similar
to some background regions (Pets_004), in sequences with
dynamic backgrounds (Wall_002), or in sequences with
illumination changes (Pets_002).

Results in Table IV allow us to appreciate that our strategy
can very significantly improve the results on a CPU.
Furthermore, as shown by the results of the last column of the
table, we are able to process multiple images per second (even
for very large sequences as Pets_001 and Pets_003).

Consequently, since the proposed strategy provides high
quality detections and is also able to process at high speed, it
seems ideal for integration into AR applications required by
last generation consumer electronic devices.

V. CONCLUSION

We have described a novel background-foreground
non-parametric-based moving object detection strategy that
we have efficiently implemented in a GPGPU.

By modeling both background and foreground from
spatio-temporal reference information we are able to provide
real-time high quality detections in sequences recorded with
portable devices (mobiles, handy-cams, etc) in a large variety
of multimodal and complex scenarios (e.g. dynamic
backgrounds, multiple moving objects or illumination
changes). Therefore, the proposed strategy is suitable for AR
tools required by the last generation of consumer electronic
devices endowed with integrated smart cameras.

REFERENCES
[1] D. W. F. van Krevelen and R. Poelman, “A Survey of augmented reality

technologies, applications and limitations”, The International Journal of
Virtual Reality, vol. 9, no. 2, pp. 1-20, 2010.

[2] A. Mulloni and T. Drummond, “Real-time detection and tracking for
augmented reality on mobile phones”, IEEE Trans. Visualization and
Computer Graphics, vol. 16, no. 3, pp. 355-368, 2010.

[3] W. Lao, J. Han, and P. h. N. de With, "Automatic video-based human
motion analyzer for consumer surveillance system", IEEE Trans.
Consumer Electronics, vol. 55, no. 2, pp. 591-598, 2009.

[4] T. Bouwmans, F. E. Baf, and B. Vachon, “Background modeling using
mixture of Gaussians for foreground detection – a survey”, Recent
Patents on Computer Science, vol. 1, no. 3, pp. 219-237, 2008.

[5] L. Wixton, “Detecting salient motion by accumulating directionally-
consistent flow”, IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 774-780, 2000.

[6] M. Piccardi, “Background subtraction techniques: a review”, IEEE Int.
Conf. Systems, Man and Cybernetics, vol. 4, pp. 3099-3104, 2004.

[7] A. Tavakkoli, M. Nicolescu, G. Bebis, and M. Nicolescu, “Non-
parametric statistical background modeling for efficient foreground
region detection,” Machine Vision and Applications, vol. 20, no. 6, pp.
395-409, 2009.

[8] R. Li, S. Yu, and X. Yang, “Efficient spatio-temporal segmentation for
extracting moving objects in video sequences”, IEEE Trans. Consumer
Electronics, vol. 53, no. 3, pp. 1161-1167, 2007.

[9] R. Pless, J. Larson, S. Siebers, and B. Westover, “Evaluation of local
models of dynamic backgrounds”, IEEE Conf. Computer Vision and
Pattern Recognition, vol. 2, pp. 73-78, 2003.

[10] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using
real-time tracking,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 747–757, 2000.

[11] M. Bicego, M. Cristani, and V. Murino, “Unsupervised scene analysis: a
hidden Markov model approach,” Computer Vision and Image
Understanding, vol. 102, no. 1, pp. 22–41, 2006.

[12] M. Cristani, M. Farenzena, D. Bloisi, and V. Murino, “Background
subtraction for automated multisensor surveillance: a comprehensive
review”, EURASIP Journal on Advances in signal Processing, pp. 43-
66, 2010.

[13] S. Elhabian, K. El-Sayed, and S. Ahmed, “Moving object detection in
spatial domain using background removal techniques-state-of-art”,
Recent Patents on Computer Science, vol. 1, no. 1, pp. 32-54, 2008.

C. Cuevas et al.: Moving Object Detection for Real-Time Augmented Reality Applications in a GPGPU 125

[14] J. Ding, M. Li, K. Huang, and T. Tan, “Modeling complex scenes for
accurate moving objects segmentation”, Computer Vision-ACCV, pp.
82-94, 2011.

[15] T. Tanaka, A. Shimada, R. Taniguchi, T. Yamashita, and D. Arita,
“Towards robust object detection: integrated background modeling
based on spatio-temporal features”, Computer Vision and Image
Understanding, vol. 113, no. 1, pp. 63-79, 2009.

[16] A. Mittal and N. Paragios, “Motion-based background subtraction
using adaptive kernel density estimation”, IEEE Conf. Computer
Vision and Pattern Recognition, vol. 2, pp. 302-309, 2004.

[17] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for
object detection”, IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 11, pp. 1778-1792, 2005.

[18] N. Martel-Brison and A. Zaccarin, “Unsupervised approach for
building non-parametric background and foreground models of scenes
with significant foreground activity”, Proc. ACM workshop on Vision
networks for behavior analysis, pp. 93-100, 2008.

[19] Y. Sheikh, O. Javed, and T. Kanade, “Background subtraction for
freely moving cameras”, IEEE Int. Conf. Computer Vision, pp. 1219-
1225, 2009.

[20] L. F. Wang, H. Y. Wu, and C. H. Pan, “Adaptive εLBP for
background subtraction”, Computer Vision-ACCV, pp. 560-571,
2011.

[21] C. Cuevas, R. Mohedano, F. Jaureguizar, and N. García, “High-quality
real-time moving object detection by non-parametric segmentation”,
Electronics Letters, vol. 46, no. 13, pp. 910-911, 2010.

[22] T. D. Han and T. S. Abdelrahman, “hicuda: High-level GPGPU
programming”, IEEE Trans. Parallel and Distributed Systems, vol. 22,
no. 1, pp. 78-90, 2011.

[23] B. Neelima and P. S. Raghavendra, “Recent trends in software and
hardware for GPGPU computing: a comprehensive survey”, IEEE Int.
Conf. Industrial and Information Systems, pp. 319-324, 2010.

[24] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing”, IEEE Micro, vol. 31, no.
5, pp. 7-17, 2011.

[25] S. F. Tsai, C. C. Cheng, C. T. Li, and L. G. Chen, “A real-time 1080p
2D-to-3D video conversion system”, IEEE Trans. Consumer
Electronics, vol. 57, no. 2, pp. 915-922, 2011.

[26] H. C. Shin, Y. J. Kim, H. Park, and J. I. Park, “Fast view synthesis
using GPU for 3D display”, IEEE Trans. Consumer Electronics, vol.
54, no. 4, pp. 2068-2076, 2008.

[27] S. W. Ryu, S. H. Lee, S. Ahn, and J. I. Park, “Tangible video
teleconference system using real-time image-based relighting”, IEEE
Trans. Consumer Electronics, vol. 55, no. 3, pp. 1162-1168, 2009.

[28] C. Cuevas and N. García, “Automatic bandwidth estimation
strategy for high-quality non-parametric modeling based moving
object detection”, IEEE Int. Conf. Image Processing, pp. 1757-
1760, 2011.

[29] Computational Vision Group, “Pets: Performance evaluation of
tracking and surveillance”, Computational Vision Group, University
of Reading, England.

[30] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower:
principles and practice of background maintenance”, IEEE Int. Conf.
Computer Vision, vol. 1, pp. 255-261, 1999.

BIOGRAPHIES

Carlos Cuevas received the Ingeniero de Telecomunica-
ción degree (integrated BSc-MSc accredited by ABET) in
2006 and the Doctor Ingeniero de Telecomunicación
degree (PhD in Communications) in 2011, both from the
Universidad Politécnica de Madrid (UPM), Spain.
Since 2006 he is a member of UPM’s Grupo de
Tratamiento de Imágenes (Image Processing Group). His
research interests include signal and image processing,

computer vision, pattern recognition and automatic target recognition.

Daniel Berjón received the Ingeniero de Telecomunica-
ción degree (integrated BSc-MSc accredited by ABET)
from the Universidad Politécnica de Madrid (UPM),
Spain, in 2005, and is currently a student of UPM’s PhD
in Communications program.
Since 2008 he is a member of UPM’s Grupo de
Tratamiento de Imágenes (Image Processing Group). His
research interests include computer graphics, parallel

processing and real-time systems.

Francisco Morán received the Ingeniero de Telecomuni-
cación degree (six years engineering curriculum) in 1992
and the Doctor Ingeniero de Telecomunicación degree
(PhD in Communications) in 2001, both from the Uni-
versidad Politécnica de Madrid (UPM), Spain.
Since 1992 he is a researcher at UPM’s Grupo de
Tratamiento de Imágenes (Image Processing Group), and

since 1997 a member of UPM’s faculty. His research interests include
hierarchical modeling and coding, and adaptive transmission and visualization of
3D objects. He has been actively involved in research projects funded by the
European Union, and participates since 1996 in the standardization activities
from ISO’s Moving Picture Experts Group (MPEG), where he is the Head of the
Spanish Delegation since 2006, and has served as (co-)editor of eight standards,
amendments and corrigenda related to MPEG-4 (formally, ISO/IEC 14496).

Narciso García received the Ingeniero de Telecomuni-
cación degree (five years engineering curriculum) in
1976 (Spanish National Graduation Award) and the
Doctor Ingeniero de Telecomunicación degree (PhD in
Communications) in 1983 (Doctoral Graduation Award),
both from the Universidad Politécnica de Madrid (UPM),
Spain.
Since 1977 he is a member of UPM’s faculty, currently a

Professor of Signal Theory and Communications. He leads UPM’s Grupo de
Tratamiento de Imágenes (Image Processing Group). He has been actively
involved in Spanish and European research projects, serving also as evaluator,
reviewer, auditor, and observer of several research and development
programmes of the European Union. He was a co-writer of the EBU proposal,
base of the ITU standard for digital transmission of TV at 34-45 Mb/s (ITU-T
J.81). His professional and research interests are in the areas of digital image
and video compression and of computer vision.

